from 01.01.2014 to 01.01.2024
from 01.01.2017 to 01.01.2024
Krasnodar, Russian Federation
UDK 347.9 Гражданское процессуальное право. Судоустройство
UDK 004 Информационные технологии. Компьютерные технологии. Теория вычислительных машин и систем
UDK 343.1 Уголовное судопроизводство. Уголовно-процессуальное право
Introduction. This article focuses on the importance and prospects for the use of artificial intelligence in predictive analytics in the criminal justice context. The research is motivated by the significant development of artificial intelligence and machine learning technologies, which are being used in a multitude of fields, including criminal justice. The authors detail the theoretical and practical aspects of predictive analytics, which makes it possible to predict future events based on statistical data and machine learning algorithms. Special attention is paid to the difference between artificial intelligence and predictive analytics. The effectiveness of the application of predictive analytics in criminal justice, including optimising preliminary investigations, improving criminal prosecution and predicting the outcome of criminal cases, is highlighted. Methods. The basis of the research methodology is dialectical materialism, applied general scientific (system-structural and formallogical, inductive and deductive, analysis and synthesis) and special (formal-legal, comparativelegal) methods. Results. The authors conclude that artificial intelligence spans a wider range of tasks requiring human intelligence, while predictive analytics concentrates on making predictions. Advanced technologies that are already in active use in various countries, improving and optimising the allocation of law enforcement and judicial resources, are described. The prospect of integrating virtual and augmented reality technologies into criminal justice is considered, which can radically change approaches to predictive analytics and criminal procedure in general, enriching visualisation and interactive cooperation between participants of legal relations.
criminal proceedings, justice, artificial intelligence, predictive analytics, modern technologies
1. Bachne J. Predictive Policing: Preventing Crime with Data and Analytic. – Washington, DC: IBM Center for The Business of Government, 2013. – 38 p. – URL: https://www.businessofgovernment.org/sites/default/files/Predictive%20Policing.pdf.
2. Aletras N., Tsarapatsanis D., Preoţiuc-Pietro D., Lampos V. Predicting judicial decisions of the European Court of Human Rights: a Natural Language Processing perspective // PeerJ Computer Science. – 2016. – No 2. – e93; https://doi.org/10.7717/peerj-cs.93.
3. Li V., Sridharan S., Sethuraman S., Avdis G. Predicting Recidivism With Machine Learning: An Analysis of Risk Factors and Proposal of Preventions // Journal of Student Research. – 2013. – Vol. 12, no 4; https://doi.org/10.47611/jsrhs.v12i4.5779.
4. Groff E. R., La Vigne N. G. Forecasting the Future of Predictive Crime Mapping / Tilly N. (ed.). Analysis for Crime Prevention. – 2002. – Vol. 13. – P. 29–57. – URL: https://popcenter.asu.edu/sites/default/files/library/crimeprevention/volume_13/03-Groff.pdf.
5. Bheeman S., Lavanya R., Kanisha R., Madhurusha G. Predictive Analytics of Crime Data using Supervised and Ensemble Learning Methods / Conference: 2022, 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC) (August 17–19, 2022). – Coimbatore, India: IEEE, 2022. – P. 1599–1603; https://doi.org/10.1109/ICESC54411.2022.9885355.
6. Brayne S., Christin A. Technologies of Crime Prediction: The Reception of Algorithms in Policing and Criminal Courts // Social Problems. – 2021. – Vol. 68, no 3. – P. 608–624; https://doi.org/10.1093/socpro/spaa004.
7. Ferguson A. G. Policing Predictive Policing // Washington University Law Review. – 2017. – Vol. 94, no 5. – P. 1109–1189.
8. Rajkumar S., Sakkarai M., Soundarya J. J., Varnikasree P. Crime analysis and prediction using data mining techniques // Prediction analysis techniques (Special Issue). – 2019. – Vol. 5, no 1. – P. 602–607; https://doi.org/10.23883/ijrter.conf.20190322.078.yi0nm.
9. Dremlyuga R. I., Reshetnikov V. V. Pravovye aspekty primeneniya prediktivnoy analitiki v pravoohranitel'noy deyatel'nosti // Aziatsko-tihookeanskiy region: ekonomika, politika, pravo. – 2018. – T. 20, № 3. – S. 133–144; https://doi.org/10.24866/1813-3274/2018-3/133-144.
10. Gavrilin Yu. V. Tehnologii obrabotki bol'shih ob'emov dannyh v reshenii zadach kriminalisticheskogo obespecheniya pravoohranitel'noy deyatel'nosti // Rossiyskiy sledovatel'. – 2019. – № 7. – S. 3–8.
11. Gabaraev A. Sh., Novikov A. V. Analiticheskoe prognozirovanie v pravoohranitel'noy deyatel'nosti. Mezhdunarodnyy opyt // Voprosy rossiyskogo i mezhdunarodnogo prava. – 2022. – T. 12, № 10-1. – S. 496–504; https://doi.org/10.34670/AR.2022.47.24.013.
12. Batoev V. B. Ispol'zovanie prediktivnoy analitiki v pravoohranitel'noy deyatel'nosti // Obschestvo i pravo. – 2022. – № 4 (82). – S. 99–107.
13. Churikova A. Yu. Iskusstvennyy intellekt v ugolovnom processe: vozmozhnosti i riski ispol'zovaniya // Informacionnoe pravo. – 2023. – № 4 (78). – S. 22–25.
14. Bormotova L. V. Iskusstvennyy intellekt v proizvodstve po ugolovnym delam / Cifrovye tehnologii i pravo : sbornik nauchnyh trudov II Mezhdunarodnoy nauchno-prakticheskoy konferencii : v 6 t., Kazan', 22 sentyabrya 2023 g. / pod red. I. R. Begisheva, E. A. Gromovoy, M. V. Zaloilo, I. A. Filipovoy [i dr.]. – Kazan': Poznanie, 2023. – T. 2. – S. 51–58.
15. Buglaeva E. A. Perspektivy primeneniya tehnologiy iskusstvennogo intellekta v sfere sudoproizvodstva // Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Pravo. – 2024. – T. 24, № 1. – S. 10–15; https://doi.org/10.14529/law240102.