Neural network classification of training candidates based on their personal and professional qualities: methodology and prospects of application
Abstract and keywords
Abstract (English):
Introduction. The The article deals with the application of artificial intelligence technology to enhance the effectiveness of professional psychological selection within internal affairs bodies. The importance of this study lies in the need to carefully select and train candidates for service in order to form the backbone of the personnel of the internal affairs bodies in the Russian Federation. In order to select the right candidates, it is necessary to enhance the process of differential ability. Additionally, this study highlights the scientific need to improve psychological support for personnel, development of methodology, methods and procedures of psychological diagnostics as a field of scientific knowledge. The research methods are general scientific methods of process information to organise knowledge about professional psychological selection and the application of neural network classification. The empirical methods used are the construction of a decision tree and neural network classification. The research sample comprises candidates for training in the educational organisation of internal affairs bodies. The results of the research can be summarised as follows: a) decision rules (decision tree) for the classification of applicants, revealing the regularities of their distribution into categories of professional suitability based on their personal and professional qualities; b) a neural network model for the differentiation of applicants into categories of professional suitability based on their personal and professional qualities. This model has shown good accuracy in selecting candidates. Theoretical results are findings about the possibility of individualisation of psychological support and improving educational work with students who have been referred to different categories of professional suitability on the basis of individual combinations of personal and professional qualities. Theoretical results also concern the improvement of educational work with students. The potential for enhancing the capacity of psychodiagnostic techniques to differentiate between individuals and the procedure for examining the personal and professional qualities of candidates for service, which reduce the risk of inaccuracies in their measurement, are outlined. The conclusion outlines the theoretical and methodological prospects for applying neural network classification method as a component of artificial intelligence technology in the selection of candidates for service in the internal affairs bodies of the Russian Federation.

Keywords:
artificial neural network, police officers, psychological selection, candidate diagnosis, neural network classification, psychological support
Text
Text (PDF): Read Download
References

1. Kurdin D. A. Sozdanie iskusstvennoy neyronnoy seti, osnovannoy na dannyh psihologicheskih obsledovaniy lichnostnyh kachestv kursantov // Psihologiya i pedagogika sluzhebnoy deyatel'nosti. – 2021. – № 2. – S. 51–58; https://doi.org/10.24412/2658-638X-2021-2-51-58.

2. Noss I. N., Kravchenko A. V., Fedotov A. Yu. K voprosu o modelirovanii lichnostno-professional'noy prigodnosti kursantov vuzov MVD Rossii // Innovacii v obrazovanii. – 2017. – № 2. – S. 94–106.

3. Karavaev A. F., Kruk V. M., Noss I. N., Vinogradov M. V. Problemy lichnostno-professional'noy diagnostiki v profotbore kandidatov na sluzhbu v organy vnutrennih del i ocenki nadezhnosti sotrudnika // Psihopedagogika v pravoohranitel'nyh organah. – 2015. – № 3 (62). – S. 106–113.

4. Petrova E. A., Ponomareva O. M. Problemy realizacii professional'nogo psihologicheskogo otbora sotrudnikov organov vnutrennih del i perspektivy ego sovershenstvovaniya // Problemy sovremennogo pedagogicheskogo obrazovaniya. – 2022. – № 76-2. – S. 279–282.

5. Mazdogova Z. Z. Professional'nyy psihologicheskiy otbor na sluzhbu v organy vnutrennih del Rossiyskoy federacii: poryadok i trudnosti // Probely v rossiyskom zakonodatel'stve. – 2019. – № 3. – S. 202–204.

6. Deulin D. V., Alekseev D. E. Faktory lichnostno-professional'noy prigodnosti kandidatov na sluzhbu v organy vnutrennih del // Psihopedagogika v pravoohranitel'nyh organah. – 2020. – T. 25, № 1 (80). – S. 14–18; https://doi.org/10.24411/1999-6241-2020-11002.

7. Carson A. D., Bizot E. B., Hendershot P. E., Barton M. G., Garvin M. K., Kraemer B. Modeling Career Counselor Decisions with Artificial Neural Networks: Predictions of Fit across a Comprehensive Occupational Map // Journal of Vocational Behavior. – 1999. – Vol. 54, Is. 1. – P. 196–213; https://doi.org/10.1006/jvbe.1998.1655.

8. Qin C., Zhu H., Xu T., Zhu C., Jiang L., Chen E., Xiong H. Enhancing Person-Job Fit for Talent Recruitment: An Ability-aware Neural Network Approach / SIGIR '18: The 41st International ACM SIGIR conference on research and development in Information Retrieval, Ann Arbor MI USA, July 8–12, 2018. – P. 25–34; https://doi.org/10.1145/3209978.3210025.

9. Letelay K. Determination of a task force for new police officers at the State Police School using a fully recurrent neural network // Injurity : Interdiciplinary Journal and Humanity. – 2023. – Vol. 2, Is. 5. – P. 466–477; https://doi.org/10.58631/injurity.v2i5.76.

10. Burke T. W. Predicting police misconduct with a neuralnetwork program // Law Enforcement Technology. – 1995. – Vol. 22, Is. 6. – P. 56–58.

11. Cubitt T., Wooden K., Kruger E., Kennedy M. A predictive model for serious police misconduct by variation of the theory of planned behavior // The Journal of Forensic Practice. – 2020. – Vol. 22, Is. 4. – P. 251–263; https://doi.org/10.1108/jfp-08-2020-0033.

12. Rahman R. A., Masrom S., Ahmad J., Maryasih L., Zakaria N. B., Nor M. A. M. Machine learning prediction of law enforcement officers’ misconduct with general strain theory // International Journal of advanced and applied sciences. – 2023. – Vol. 10, Is. 1. – P. 48–54; https://doi.org/10.21833/ijaas.2023.01.007.

13. Rainio O., Teuho J., Klén R. Evaluation metrics and statistical tests for machine learning // Scientific Reports. – 2024. – Vol. 14, Is. 1. – P. 6086; https://doi.org/10.1038/s41598-024-56706-x.

14. Remeikis N., Skučas I., Melninkaitė V. Text Categorization Using Neural Networks Initialized with Decision Trees // Informatica – 2004. – Vol. 15, Is. 4. – P. 551–564; https://doi.org/10.15388/informatica.2004.078.

15. Sorokoumova S. N., Kurdin D. A. Ispol'zovanie data mining v izuchenii dinamiki lichnostnogo rosta kursantov vedomstvennogo vuza Federal'noy sluzhby ispolneniya nakazaniy // Chelovek: prestuplenie i nakazanie. – 2022. – T. 30, № 1. – S. 86–95; https://doi.org/10.33463/2687-1238.2022.30(1-4).1.86-95.

16. Kubyshko V. L. Sovershenstvovanie psihologicheskoy raboty v sisteme moral'no-psihologicheskogo obespecheniya operativno-sluzhebnoy deyatel'nosti lichnogo sostava organov vnutrennih del // Nacional'nyy psihologicheskiy zhurnal. – 2017. – № 4 (28). – S. 95–103; https://doi.org/10.11621/npj.2017.0409.

17. Chumakova E. V., Korneev D. G., Gasparian M. S. Razrabotka metoda adaptivnogo testirovaniya na osnove neyrotehnologiy // Otkrytoe obrazovanie. – 2022. – T. 26, № 2. – S. 4–13; https://doi.org/10.21686/1818-4243-2022-2-4-13.

Login or Create
* Forgot password?